CALVERT HALL COLLEGE HIGH SCHOOL

SENIOR CAPSTONE PROJECT

MCMULLEN SCHOLARS PROGRAM

Kernel Security and Protection: An
Investigation Into User Freedom Through a
Toy Operating System

Author: Mentor:
Jason WALTER Mzr. Christopher TADDIKEN

January 2021

Contents

Contents

il

Models of Security and Protection|

[I.4 Separation of Privilege|0 0.

[L.5 Internet Connectivity and Security|
1. nclusionl

Personal Computing Freedom|

Security, Protection, and Personal Computing Freedom|

3.1 Security and Protection Reduce Freedom|
(3.2 The Reference Monitor Concept|.
[3.3 Memory Protection| o oo o o
[3.4 Privilege Separation|. o oo o o
3.5 The Multi-User Paradigm|

44 Hydra, SPIN,and Xok|
.5 The Temple Operating System|.

The Capstone Operating System|

.1 Goals of The Capstone Operating System|
p.2 KernelDesignl 0.
[p.3 Architecture and Accessibility|. oo o000 oo

p.4 Memory Representation| 0000

10
10
10
11
11
13

0.6 Dynamic Memory Allocation|

Vi nclusions|

A Capstone Operating System Code|

ii

1 Models of Security and Protection

1.1 Security and Protection Goals

Security, in the context of an operating system kernel, is the assurance that system
resources may only be accessed by those who have the proper rights to them. Its spe-
cific goals and implementation are often varied, and the exact issues that it confronts
have changed substantially throughout the history of computing. The concerns of se-
curity have shifted from merely separating users to incredibly elaborate mechanisms
that ensure each user has proper access rights. (Tanenbaum 612). In this way, the goals
of operating system security often coincide with the goals of system protection, which
enforces rules for the use of resources in a computer system (Silberschatz 612). Both
concepts involve restricting access to given resources, with key differences. Security is
focused on privacy and integrity with regard to malicious actors, while protection is

focused on maintaining a usable system by preventing errant resource access.

Contemporary approaches to operating system kernel-level security and protection
mainly include methods of restricting access to certain system resources based on user
identity. Such mechanisms function within a multi-user paradigm in which a user need
not correspond to a human individual. These approaches to security can mainly be
derived from the concepts of the reference monitor, capabilities, process abstraction,

memory protection, and privilege separation in general.

1.2 Reference Monitors and Capabilities

The reference monitor concept is an effective model for analyzing and constructing
a secure system. It “defines the necessary and sufficient requirements for access control
in a secure operating system,” and an operating system must fulfill three distinct criteria
in order to satisfy the model (Jaeger 17). The operating system must first serve as the
sole mediator for secure operations. This ensures that there is a standard mechanism
for the validation of privileges. Secondly, the complete reference monitor system must
not be vulnerable to any type of meddling or outside tampering. Lastly, the reference
monitor system must maintain a small enough size that its working status can be easily

verified, assuring that the system is secure. Essentially, the reference monitor system

Chapter 1. Models of Security and Protection 2

must serve as an independent access controller, ensuring that a given user or program
has the necessary privilege to access a given resource. All requests for resources or
security-sensitive operations must be independently verified by the reference monitor
system. An operating system that does not provide this utility cannot necessarily be
considered secure, as it would be lacking a tamper-proof method for actually enforcing

any security policies.

This concept meshes well with the design of capability-based systems. Such sys-
tems inform the design of nearly all operating system security mechanisms today, even
if they do not strictly adhere to their requirements. The defining characteristics of
capability-based systems are that they “provide (1) a single mechanism to address both
primary and secondary memory, and (2) a single mechanism to address both hardware
and software resources” (Levy 3). Capability-based systems use an object-based ap-
proach to access control, and as such may be seen as a higher abstraction of the refer-
ence monitor concept. This means that they build upon the principles of the reference
monitor concept in order to provide a broad mechanism that achieves its goals. In a
capability-based system, every process and user is granted a set of capabilities that de-
fine their access rights to system resources, such as a restricted area of memory or a
certain subset of files. The reference monitor concept and capabilities together inform
the contemporary approach to kernel security through such measures as access control
for read, write, and execute privileges in a file system as well as for process memory
protection.

1.3 The Process Abstraction

In order to adequately implement either a reference monitor system or a capability-
based system, it is necessary to keep track of each independent program running on
a given computer system. The process abstraction is necessary to any comprehensive
operating system as it allows for a distinct separation between different tasks being
performed by the computer’s hardware. Indeed, “[t]he most central concept in any op-
erating system is the process: an abstraction of a running program” (Tanenbaum 83).
An operating system is able to determine the resources that have been allocated to indi-
vidual tasks using the process abstraction, a job which is integral to the implementation
of both security and protection. Perhaps the most important function of security and
protection related to the process abstraction is memory protection, which isolates the
memory resources of each process. This mechanism prevents a process or user from
reading or writing to memory that does not belong to them. This boosts security by pre-
venting meddling in running programs or the reading of private data, and it facilitates
protection by preventing processes from mistakenly overwriting another process” mem-
ory, which could result in catastrophic consequences for a system in run-time. Without

Chapter 1. Models of Security and Protection 3

memory protection, data being stored by important system programs such as hardware
device drivers could be randomly overwritten by a malfunctioning program, crippling
the operating system. However, memory protection greatly restricts the ability of pro-
grams to work together by isolating processes completely. This separation then neces-
sitates the implementation of message-passing systems, such as signals, pipelines, or
shared memory spaces, independent of each process” allocated resources. Such solu-
tions complicate the process of programming.

1.4 Separation of Privilege

Mechanisms such as memory protection accomplish a separation of privilege, with
different users and processes maintaining their own domains of control. The concept
of privilege separation is further explored in the construction of the kernel itself. The
two dominating kernel paradigms are the monolithic kernel and the microkernel, each
of which carries its own repercussions for security and protection, and for the ways in
which privilege is separated. For monolithic kernels, all of the resources for an operating
system are built into the kernel itself, leaving none of the responsibility for managing
system resources to programs written and used by users, known as userspace programs.
This hinders the ability of the kernel to manage privilege separation, as the kernel itself
maintains full control over the entire system. In contrast, microkernel development
seeks to minimize the size of the kernel as much as possible, limiting it only to neces-
sary tasks such as the management of hardware drivers or setting up a basic system
environment. Everything else is relegated to userspace, which allows for a more granu-
lar privilege separation. This in itself is a form of protection, as it prevents total system
failure in the case of protection failing. If a monolithic kernel were to encounter a criti-
cal failure, the entire system would crash. A microkernel, on the other hand, would be
able to isolate the failure and prevent a total crash because privileges would be strictly

separated.

1.5 Internet Connectivity and Security

The role of increased internet connectivity in the development of security mecha-
nisms must be noted in reference to contemporary operating system kernel security and
protection. Although computer systems built before the advent of the internet almost
never had to consider the repercussions of connecting to other systems, such connectiv-
ity is ubiquitous today; there are projected to be 34.2 billion global connected devices
by 2025 (Congressional Research Service 2). Such connectivity, in combination with the

multi-user paradigm utilized by most contemporary operating systems, has led to a

Chapter 1. Models of Security and Protection 4

convoluted approach to security and protection which accounts for many external vari-
ables. For an internet-connected device, a “typical attack pattern consists of gaining
access to a user’s account, gaining privileged access, and using the victim’s system as a
launch platform for attacks on other sites” (Longstaff 5). This means that kernels must
account for the privileges and capabilities of different users in order to prevent the esca-
lation of privileges upon a system breach, which exacerbates the limits already imposed
by protection mechanisms.

1.6 Conclusion

In general, security and protection measures in operating system kernels work to
define who can access which resources and to prevent harmful access to those resources.
Such measures are essential to maintaining a functional system in many contexts, espe-
cially when a computer is meant to be accessed by multiple users or when a computer
carries sensitive information. As such, these measures are incredibly useful to busi-
nesses, governments, and any computer user who wants to keep their data safe and
secure without having to pay any attention themselves. However, the implementation
of such security and protection measures necessarily adds overhead to an operating sys-
tem kernel and may negatively impact the ability of a user to use their whole computer
system freely and effectively. The development of an operating system kernel should
be informed by the security and protection measures necessary to fulfill its purpose.

2 Personal Computing Freedom

The design of the Capstone operating system is informed by the maximization of
“personal computing freedom,” which is defined as the ability of a user to interact with
and modify all parts of a given computer system. This definition is derived from the
characteristics of free software as suggested by the Free Software Foundation, namely:
“the freedom to run ..., to study and change ..., and to redistribute copies [of the soft-
ware]” (Stallman). Given that personal computing freedom necessitates the evaluation
of a system in its entirety, it is necessary for most or all operating system security and
protection measures to be absent in order for the freedom to be maximized. Such mea-
sures prevent users from accessing certain parts of their own systems, and only by re-
moving them entirely may a computer system acquire personal computing freedom.
Although such a proposition may at first seem radical and, admittedly, could easily re-
sult in a system completely useless to most possible users, the groundwork for such
a system has already been established. This groundwork can be traced far back into
the history of computing and owes itself to the free software movement as well as to
the work of the communities surrounding free and open source software projects them-
selves (Free Software Foundation). Personal computing freedom also refers to the scope
in which a machine is used. A computer used in a personal capacity must provide

multimedia amenities to users in order to fulfill its purpose.

It is important to note that the principle of personal computing freedom extends
not only to the interface between the system and the user, but also to the formatting
and organization of the system’s source code itself. For this reason, the principle of
personal computing freedom may be related to such standards as the Linux kernel cod-
ing style, which, when editing code, “leads to ease of reading, lack of confusion, and
further expectations that code will continue to follow a given style” (Love 396). Only
a consistent coding style can permit a truly free personal computer, as muddled and
convoluted source code makes it unduly difficult for a user to read and edit aspects
of their system. The ability to read and understand a given system’s source code also

paradoxically increases the trust in and security of the system.

Despite the inherent contradiction in this claim, a truly free personal computer

Chapter 2. Personal Computing Freedom 6

would experience a peculiar increase in its security by eschewing security and protec-
tion measures. It would enable the user to trust and keep track of both the system’s
source code and its whole runtime environment. As such, a system that achieves per-
sonal computing freedom would address that famous observation from Ken Thomp-
son’s Reflections on Trusting Trust; namely, that you “can’t trust code that you did not
totally create yourself” (763). Forcing a user to run programs with unclear origins is
a practice diametrically opposed to personal computing freedom. Informed by this, a
truly free personal computer would avoid subversion by maximizing transparency, as
to “use internal mechanisms within a computer system to protect sensitive information
without demonstrable assurances as to the origins and effectiveness of the system com-
ponents is contrary to a sound security practice” (Myers 10). In this way, although the
basic and physical mechanisms of computer security may be abandoned, a truly free
personal computer would involve a type of security not easily found in any contem-
porary commodity operating system. It would inspire trust and motivate its users to

investigate its safety by rendering its source code accessible and well-documented.

In the event that such a free system were created, it would provide niche utility
to the subset of computer users who desire complete control over every aspect of their
system. Current commodity operating systems impose security or protection measures,
or otherwise have convoluted internals that complicate the process of understanding
and editing them. Such a system would also serve as an excellent teaching tool. It
would allow a student to learn easily about how operating system software interacts
with computer hardware, as there would be no limitations as to how the user might
facilitate and meddle in those interactions. Most importantly, such a system would
foster a great community, much in the style of the Linux kernel or other large free and
open source projects. No matter the size of the community, the ensured freedom of
the system would allow for quality modifications and updates that the community as a
whole would be able to read and understand.

The Capstone operating system utilizes the principle of personal computing free-
dom in order to be such a system. It borrows from the free software aspects of contem-
porary commodity and research operating systems. Building upon this base provided
by the Free Software Foundation and similar movements, it provides a computing ex-
perience that allows a single user to interact with and modify every part of the system
by eschewing security and protection mechanisms in favor of a more permissive design,
even if that design is unsafe. The Capstone operating system as such provides a trans-
parent interface through which a user may perceive the workings of their computer as
well as the foundation for teaching and a software development community.

3 Security, Protection, and Personal
Computing Freedom

3.1 Security and Protection Reduce Freedom

The implementation of security and protection measures fundamentally reduces
personal computing freedom, as the function of security and protection measures is to
mediate access to resources that honest users could reasonably want to use (Gasser 9).
An operating system kernel will therefore become more impossible to use as it employs
more preventative measures that may frustrate users (Peterson 62). Advanced users are
the most impacted by this relationship, as general users will usually have less need to
circumvent the inconveniences caused by security and protection. It is therefore neces-
sary to avoid the implementation of security and protection measures when developing
an operating system kernel with personal computing freedom in mind.

3.2 The Reference Monitor Concept

Although it is useful for determining the security of a given computer system, the
reference monitor concept is fundamentally opposed to personal computing freedom
because it requires some part of the operating system to be tamper-proof. Rendering
any portion of a computer system tamper-proof is the most extreme protection measure,
and a total prevention of access and modification is not compatible with the principle
of personal computing freedom. However, this classification only applies to software
systems. Hardware systems are generally tamper-proof by nature and should pursue
protection whenever possible because they are immutable and the lack of protection
could render a hardware system useless. Software systems, on the other hand, can be
easily modified in order to achieve personal computing freedom. Capability-based sys-
tems, by extension, also violate the principle of personal computing freedom. Although
providing a standard system to access resources is not inherently restrictive, introducing

access rights limits the ability of a user to fully interact with their machine.

Chapter 3. Security, Protection, and Personal Computing Freedom 8

3.3 Memory Protection

Memory protection, likewise, prevents a user from completely accessing their ma-
chine. By fencing off areas of memory through software controls in order to protect pro-
cesses from errant memory access, memory protection privileges the machine itself over
the user controlling the machine. In this way, strictly enforced memory segmentation
is contrary to the principle of personal computing freedom. Although there is definite
utility in crafting strong mechanisms for preventing system failure, it is not possible to
prevent users from reading or writing to certain portions of memory without sacrificing
freedom. The drawbacks of allowing complete access to every process’ memory space
are easily alleviated by the practice of good programming, which prevents accidental
changes to important memory regions. However, methods of memory protection could
remain compatible with the principle of personal computing freedom if they were only
designed to protect processes from other processes. In this manner, users could elect to
override the protection in their own programs while still maintaining effective protec-

tion against critical system failure.

3.4 Privilege Separation

Just as with memory protection, the separation of privilege does not automatically
lead to a reduction in personal computing freedom. For this reason, there is no inher-
ent difference between the freedom provided by a monolithic kernel or a microkernel,
although they necessarily differ in the implementation of access to the computer’s re-
sources. In theory, a microkernel offers greater possibilities in personal computing free-
dom because it relegates many essential services to userspace. This allows the user to
control their computer with greater granularity in a way that is expressly sanctioned
by the kernel. A monolithic kernel, conversely, offers a simpler interface for accessing
system resources and interacting with hardware because it consists of just one runtime.
Laudable personal computing freedom can be achieved using both designs or even com-
pletely different designs, although each design will achieve it in different ways.

3.5 The Multi-User Paradigm

Finally, a multi-user approach to operating system design reduces personal com-
puting freedom drastically. Dividing a computer system into distinct resource areas
based on various users” access rights reduces the ability of any given user to fully in-
teract with the computer system and adds needless overhead to operating system ker-
nel. Multi-user design discards the needs of a single user in favor of maximizing the
ability of several users to work together, ignoring the ideal of a personal computer in

Chapter 3. Security, Protection, and Personal Computing Freedom 9

the process. Separating the resources of users also entails running code to ensure that
each user’s files, processes, and memory are partitioned according to some predefined
scheme at any given time, reducing the efficiency of the computer system. The security
concerns that come with preventing privilege escalation between users also contribute
to needlessly convoluted design in multi-user systems, which further reduces personal
computing freedom.

3.6 Conclusion

This analysis indicates that an operating system kernel that conforms to the prin-
ciple of personal computing freedom cannot implement security and protection mea-
sures. Although the hardware that the kernel runs on might implement these measures,
further security and protection mechanisms only serve to impede the user. Memory pro-
tection is the most egregious violator of the principle of personal computing freedom,
as it works in tandem with the multi-user paradigm to partition the running system
into distinct resource areas that a single user may not interact with or edit. An oper-
ating system kernel that is meant to conform to the principle of personal computing
freedom should be developed with care. Any rule that prevents the user from accessing
or modifying any part of the system is in violation of the principle.

10

4 Security, Protection, and Freedom
in Practice

4.1 Introduction

The security and protection paradigms introduced by various actual operating sys-
tems have varied effects on personal computing freedom, with commodity operating
systems in particular having notably poor freedom. The biggest factors influencing this
are the multi-user paradigm, closed source code, and convoluted design, in addition to
a general disregard for ease of use. However, it is also necessary to investigate the meth-
ods of experimental or research operating systems in order to understand the frontiers
in operating system kernel security and protection in relation to personal computing
freedom.

4.2 UNIX

The UNIX operating system has had an immense impact on the design of operating
systems in general, and stood at the forefront of multi-user systems (Bach 3-4). Many of
its kernel design decisions have directly impacted or carried over to the design decisions
of the Linux kernel, which is one of the most important and influential pieces of software
today (Love 3-4). The UNIX design philosophy, which emphasizes a style of coding that
facilitates personal computing freedom, also remains prevalent in the free and open
source software community. However, it is necessary to investigate how the specific

features of the UNIX operating system negatively impact this freedom.

The multi-user paradigm of the UNIX operating system has a disastrous effect on
the freedom of the system as a whole. Personal computing freedom necessarily dictates
a focus on a single user who has complete control over the system. Although a sys-
tem built around multi-user interactions offers great utility in many circumstances, it is
directly opposed to the principle of personal computing freedom. It requires the par-
titioning of the system into resource areas only accessible by certain users, which may
not even correspond to the actual human users of the computer system. The convoluted
system of permissions that necessarily follows greatly restricts the ability of any given

Chapter 4. Security, Protection, and Freedom in Practice 11

user to interact with the computer’s software and hardware in any meaningful or com-
plete way, as most functions and processes will be rendered inaccessible to them. Even
a “superuser” with complete access to the system must operate within the boundaries
imposed by a multi-user structure, and introduces another layer of complexity to the
design and security of the system.

4.3 Windows 7

The Windows 7 operating system dominated the desktop operating system market
before the introduction of its successors (Silberschatz 693). Although it was by far the
most popular of the commodity operating systems targeted towards single users in its
time, it failed to provide any semblance of personal computing freedom, largely as the
result of its proprietary and closed-source code base and convoluted design. These fea-
tures were the natural result of the operating system’s status as a commodity marketed
by the Microsoft Corporation and demonstrate how the commodity form is harmful for
users when applied to foundational software like an operating system. Closed source
code is fundamentally opposed to the principle of personal computing freedom because
it prevents the user from understanding or modifying their system. However, the com-
modity form necessitates closed source code because the Microsoft Corporation cannot
make money if a team of good-natured tinkerers can access their source code and dis-
tribute a modified and free version of Windows. This principle of profit is also the force
behind the convoluted design of the Windows 7 operating system. In order to protect
access to information about Windows internals, the operating system has purposefully
undocumented functions that can be found by users, but have unknown properties
(Russinovich 66). The operating system is designed from the bottom up to be hostile
to any users.

4.4 Hydra, SPIN, and Xok

The Hydra, SPIN, and Xok operating systems are all systems designed for the pur-
poses of experimentation or research. Each of them takes a unique approach to kernel
design with distinct effects on personal computing freedom, and can be used as ex-
cellent reference points to inform the design of a more free operating system. Hydra
emphasizes the separation of software policy and mechanism, while the SPIN and Xok
systems are designed to grant the power to modify the kernel’s extension infrastruc-
ture to userspace applications in order to improve modularity. A synthesis of these
approaches can greatly improve personal computing freedom.

Chapter 4. Security, Protection, and Freedom in Practice 12

The main goal of the Hydra operating system is to definitively separate policy and
mechanism. This approach, pioneered by the Hydra system, has since been adapted
more generally to such software as Linux device drivers, which provide an interface be-
tween the Linux operating system and peripheral hardware devices. To this end, “[a]n
important goal of the Hydra system is to enable the construction of operating system
facilities as normal user programs” (Levin 132). This aim grants near-total control over
the machine to the user by providing to them the ability to define how the operating
system interacts with hardware. To clarify the distinction between policy and mech-
anism, “[p]olicies are (by definition) encoded in user-level software which is external
to, but communicates with, the kernel ... Mechanisms are provided in the kernel to
implement these policies” (Levin 132). This separation of policy and mechanism ren-
ders the kernel protection mechanism for the Hydra system “a passive one,” which is
of great interest to the endeavor of improving personal computing freedom while also
maintaining a stable system that does not crash itself (Levin 139).

The SPIN operating system takes a very similar approach to this issue, with a
greater emphasis on directly swapping out extension infrastructure for user-defined
services. In particular, “SPIN provides an extension infrastructure, together with a core
set of extensible services, that allow applications to safely change the operating sys-
tem’s interface and implementation” (Bershad 267). This extension infrastructure is a
framework that allows a program to modify the operating system to maximize effi-
ciency for particular tasks. In much the same way as the Hydra system, the SPIN sys-
tem allows users to define kernel-level functions for allocating system resources. Once
loaded, these functions “integrate themselves into the existing infrastructure and pro-
vide system services specific to the applications that require them” (Bershad 268). In
much the same way as the Hydra system, this arrangement allows for a great amount
of personal computing freedom by enabling the user to control how the kernel interacts
with the hardware, and not forcing the user to abide by whatever security and protec-
tion measures the kernel has in place.

The Xok operating system builds upon the foundation of the Hydra and SPIN sys-
tems by operating as an exokernel, which aims to “give as much safe, efficient control
over system resources as possible” (Engler 26). This kernel structure, as a departure
from traditional monolithic kernel and microkernel styles, allows for perhaps the great-
est possible conformance to the principle of personal computing freedom by addressing
the most serious problem of older kernel styles, namely, that “only privileged servers
and the kernel can manage system resources” (Engler 13). The Xok system and the ex-
okernel architecture address this issue “by giving untrusted application code as much
safe control over resources as possible, thereby allowing orders of magnitude more pro-

grammers to innovate and use innovations, without compromising system integrity”

Chapter 4. Security, Protection, and Freedom in Practice 13

(Engler 13). This system as such gives the user direct access to the relationship between
their computer’s hardware and the operating system software, maintaining a passive
protection mechanism in much the same way as the Hydra system. The Capstone op-
erating system uses the ideals of the Xok system as a guide, despite being limited to a

monolithic, statically-linked kernel.

4.5 The Temple Operating System

Departing from the realm of research operating systems, the Temple operating sys-
tem in many ways aims to act as a truly personal computer, meant to be operated by only
a single user. Although its development has been halted due to the untimely demise
of its sole developer, it achieves mostly positive results in conforming to the principle
of personal computing freedom. According to its developer, “[t]he two most sacred
and defining features of TempleOS are being ring-0-only and being identity-mapped”
(Davis). This means that there is no separation of privilege between kernel space and
userspace, which increases freedom by eliminating that restrictive method of privilege
and resource separation. The identity-mapping of memory refers to the virtual address-
ing of memory in the operating system being the same as the physical addressing of
memory in hardware, which allows for greater freedom by simplifying the representa-

tion of hardware in software.

The Temple operating system functions as notably free to the user as the result of its
ring-0 and identity-mapped characteristics, but its own unique programming language
and convoluted development goals detract from its accessibility and utility as a truly
free personal computing system. Users are more able to control their system by having
greater and more direct access to hardware, without the limitations of privilege sepa-
ration. Both of these features are bolstered by the operating system’s focus on a single
user, allowing only one user to have complete access to their computer in its entirety.

However, the Temple operating system fails to be completely free because of its
convoluted and nonsensical design goals. Its own unique programming language, Holy
C, excludes programmers who do not spend the time to learn it, obfuscating how the
operating system functions. This confusion is compounded by the system’s focus on
being a divine instrument to facilitate communication between a user and God. As
such, the Temple operating system fails to function as a system that conforms to the
principle of personal computing freedom because it is not designed with ease of control

in mind.

14

5 The Capstone Operating System

5.1 Goals of The Capstone Operating System

The Capstone operating system facilitates the creation of a completely free per-
sonal computer, building upon the legacy of systems before it and learning from their
mistakes. It provides complete and transparent access to the hardware through its ker-
nel design and prioritizes the freedom of a single user. As a result of this, there are no
security or protection measures in place. The kernel code follows the standards for the
Linux kernel coding style and is well documented. This makes the code easy to read
and modify, in line with the principle of personal computing freedom. In addition, the
Capstone operating system is licensed under the GNU GPL Version 3, rendering it free
software. Any user may edit and redistribute it so long as they maintain its licensing.

The scope of the Capstone operating system is limited because of the relatively
short timeframe of the Capstone project as well as the inexperience of the developer.
For this reason, some operating system features that tend to be ubiquitous, such as a file
system or graphical windows, have not been integrated into the current build. The focus
of the Capstone operating system is primarily to demonstrate the minimum possible
computer system that conforms to the principle of personal computing freedom.

5.2 Kernel Design

The Capstone operating system kernel is monolithic, with all routines being man-
aged within a single runtime. Although such a design complicates the internals of an
operating system as it grows larger, it allows the relatively meager source code of the
Capstone operating system to be simplified and managed more easily. This design also
encourages users to experiment with tweaking the source code or directly writing their
own routines to expand the functionality of the operating system, which is an aid to
personal computing freedom. A microkernel design would be more conducive to per-
sonal computing freedom given a project of a larger scope, but a monolithic design is
more than sufficient for the size of the Capstone operating system kernel.

Chapter 5. The Capstone Operating System 15

5.3 Architecture and Accessibility

In order to maximize accessibility, the Capstone operating system is written en-
tirely in C and Intel x86 NASM assembly. The C programming language is favored in
every case because it is more readable and commonly known, but some portions of the
operating system, such as the initial boot sequence and functions to interact with data
ports, must be written in assembly. This design choice improves upon the standard set
by the Temple operating system, which achieved a great deal of personal computing
freedom but was largely inaccessible as a result of its unique programming language,
Holy C. Such an approach also allows the Capstone operating system to borrow from
the portability of UNIX, building upon the aspects of the UNIX design that offer the
most personal computing freedom.

The Intel x86 platform was chosen for development because it is well-documented
and boasts complete legacy support on many systems. This maximizes the portability of
the Capstone operating system and allows development to focus on only one hardware
paradigm, rather than diluting the focus of the project by including additional hard-
ware support. In addition, the Intel platform integrates incredibly well with generic
hardware, which speeds up development time and allows for testing on a greater range
of devices.

54 Memory Representation

Memory in the Capstone operating system is organized into a single address space,
rather than distinct memory segments. To borrow from the Intel 80386 Programmer’s
Reference Manual, this means that “the applications programmer sees a single array of
up to 232 bytes (4 gigabytes)” (23). This flat model of memory organization is in contrast
to the segmented model, which utilizes unique features of the Intel processor in order
to create isolated memory segments each used for their own purpose. The flat model
allows developers and users alike to have greater freedom in deciding how memory is
organized on the system and makes it easier for a user to view and arbitrarily modify
generic memory. Such a model also allows the Capstone operating system to borrow
the concept of identity-mapping from the Temple operating system, ensuring that the
representation of memory seen by the users of the Capstone operating system is as close
as possible to the physical memory actually being used on the memory hardware. Al-
though a segmented memory model offers the ability to use a 64 terabyte logical address
space rather than a 4 gigabyte logical and physical address space as well as the ability to
associate individual processes with distinct segments and switch more easily between
them for multi-tasking, these benefits are overshadowed by the complicated structure

Chapter 5. The Capstone Operating System 16

MODULE MODULE
Y -+ —» Fa
CODE DATA
— Cs (CODE)
— 55 (STACK)
DATA
STACK -+ DS (DATA) — ™ STRUCTURE
E5 (DATAH) ‘
— Fs (DATA)
DATA =S (DATA) DATA
STRUCTURE _LP STRUCTURE
2 3

FIGURE 5.1: Intel 80386 Programmer’s Reference Manual, page 32

involved with segmentation. The representation of memory that it entails is not con-
ducive to the principle of personal computing freedom. It can be seen from Figure
which demonstrates the use of memory segmentation, that the discrete partitioning of
code and multiple sets of data complicates the user’s ability to easily access memory.

5.5 User Accommodations

Users of the Capstone operating system are able to access a universal function key,
which is arbitrarily populated before compile-time. This key allows a user to assign a
unique user-function name to any function within the operating system’s source code
so that it can be referenced and called from the operating system’s terminal. These func-
tions in general act as the normal terminal apps that can be found on any system. They
take a list of arguments from the terminal along with an argument count. However, this
framework is powerful because it allows a user to easily modify and reuse any system
function as a user-function, which opens the entire operating system up as an opportu-
nity for development and interactive use. As an example, a user could take the function
for reallocating memory to a given pointer, crealloc (), and apply a simple edit to allow
it to take string arguments before converting them to integers. This would provide to
the user the ability to resize any allocated block of memory in use from the command
line, which is a power conducive to the principle of personal computing freedom. Func-
tions that require no arguments, such as t_clear (), the function that clears the screen,
can be utilized as a user-function with no modification. The fexec() function is called

from the terminal to execute user-functions, and is defined as such:

2 {

2 {

Chapter 5. The Capstone Operating System 17

void fexec(void *func, int argc, char =#xargs)

void (#pfunc)(int, char =#x) = func;
pfunc(argc, args);

return;

In addition to these system features, the Capstone operating system also has basic
multimedia functionality. By enabling timer interrupts, the operating system is able to
use the PC motherboard beep speaker in order to build a music library. This library sup-
ports polyphony up to three notes and total rhythmic freedom. The current build of the
Capstone operating system comes bundled with music functions for “Happy Birthday”
and “Megalovania” by Toby Fox. Multimedia functionality is important for personal
computing freedom because it defines a personal computer. Most personal uses of a
computer rely on multimedia, and the multimedia capabilities of the Capstone operat-

ing system provide a sound base for expansion.

5.6 Dynamic Memory Allocation

The Capstone operating system allocates memory dynamically by maintaining a
linked list of free regions of memory. When a program requests for memory to be allo-
cated, that list of free regions is searched for a region that is the same as the requested
size. If this search fails, the first larger memory region is split and a region of the re-
quested size is created. Memory regions that are freed are attached to the very beginning
of the list. There is no memory protection beyond marking regions of memory used by
the processor as perpetually allocated. This memory allocation scheme causes a unique
form of memory fragmentation as the operating system is used. Normal memory frag-
mentation occurs when there is enough free memory to satisfy a request, but allocated
memory separates free regions of memory and prevents them from being used. In con-
trast, this scheme causes fragmentation in the form of free memory regions that are ac-
tually located next to each other reducing into smaller and smaller fragments, such that
there eventually might not be a large enough region to satisfy a request. However, Such

an issue is easily fixed by trivial defragmentation as exemplified through this function:

void defragment(void)

struct free_hop *p = free_origin.fw;
struct free_hop x*cmp = p;

/+ search for adjacent hops, then collapse them together =/
while (p !'= NULL) ({
while (cmp—>fw != NULL) {
if (cmp—>fw == (struct free_hop =) ((uint8_t *)p + p—>size)) {

Chapter 5. The Capstone Operating System 18

p—>size = (p—>size + cmp—>fw-—>size);
canp—>fw = cmp—>fw—>fw;

canp = cmp—>fw;

p = p—>fw;
cmp = &free_origin;

return;

The Capstone operating system’s first memory allocation scheme segmented all
memory into a series of 256-byte chunks and was only able to allocate adjacent series
of entire chunks. This scheme was incredibly inefficient both in conservatively utilizing
the scarce memory resource and in quickly handling allocations. It was necessary to
maintain an array of chunk headers at the very beginning of free memory in order to
track allocated memory. Memory could be allocated more efficiently by reducing the
standard chunk size, but this would lead to a longer array of headers at the beginning
of free memory, reducing the amount of memory available to the machine. Similarly, a
greater number of total chunks would lead to more time spent searching for free mem-
ory. This scheme allowed the Capstone operating system to initially implement features
requiring memory allocation, but it was also necessary to be shed.

The current memory allocation scheme improves greatly upon this design. It allows
for the efficient allocation of resources as well as for quickly finding free memory regions
to allocate. It should be noted that this way of allocating memory is more complex than
the original, and may not be entirely accessible to new programmers. The doubly linked
lists and pointer arithmetic utilized can be confusing to inexperienced users. Developers
pursuing operating system design should explore multiple different memory allocation
schemes in order to realize the benefits and drawbacks of each.

5.7 Conclusions

The Capstone operating system, as a minimal example, embodies and justifies the
principle of personal computing freedom. Its open source code is written in an ap-
proachable and readable style and allows users to view and edit the functionality of
their system. This code is well-documented and accessible to new programmers, which

Chapter 5. The Capstone Operating System 19

allows the operating system to serve as a teaching tool for operating system develop-
ment. By extension, the code is capable of fostering a robust development community
through its openness to outsiders. Its flat memory model provides an approachable
memory structure and allows users to survey the entire system runtime without re-
straint and to define their own methods of memory organization with ease. Despite
its small size, the Capstone operating system demonstrates the potential to be a free
operating system alternative given a continued development cycle.

The limitations of the Capstone operating system include its lack of a file system,
its lack of a clear process structure and multi-processing, and its restricted modularity.
Without a proper file system, all programs must be compiled into the kernel before it
is loaded onto hardware, which makes it impossible to edit any part of the operating
system’s code during runtime. This also prevents a user from storing data, which limits
the possibilities of the Capstone operating system for personal computing. The lack of
a process structure also means that the Capstone operating system is necessarily single-
tasking, only able to run a single program at a time. Although such a design is workable
for general computing tasks, it is generally favorable for the user to be able to run a
program in the background or switch between multiple programs running at once. The
Capstone operating system is not modular in that there are not easy replacements for
different system functions. Currently, the user is only able to choose a single scheme for
organizing and allocating memory. Any user is certainly free to write their own scheme,
but it is necessary for the Capstone operating system to provide options in order for it
to be truly free.

A more generic limitation of the Capstone operating system is its lack of a graphical
mode. The operating system currently operates in text mode, making use of the VGA
text mode graphics found in older BIOS computers. Newer systems, however, have
abandoned support for this mode. As such, the Capstone operating system is unable to
boot on newer hardware, despite otherwise providing generic Intel hardware support.
The addition of a graphical mode will allow the Capstone operating system to boot on
most Intel machines from the past three decades, and will also provide new possibilities
for programming the operating system.

The Capstone operating system is a promising introduction to the possibilities of
emphasizing personal computing freedom. An operating system that conforms to the
principle of personal computing freedom is certainly possible. Indeed, many contempo-
rary commodity operating systems do so in one way or another, and research and hobby
operating systems have further demonstrated the feasibility of such an endeavor. By
eschewing security and protection measures, the Capstone operating system demon-
strates the potential to conform to the principle of personal computing freedom and

Chapter 5. The Capstone Operating System 20

synthesize all the most relevant aspects of the UNIX, Xok, Hydra, and Temple operat-
ing systems.

21

A Capstone Operating System Code

The Capstone operating system is a living operating system still under develop-
ment at the time of writing. The complete source code of the Capstone operating sys-
temm can be found at https://www.github.com/walterj21/capos. Note that the Cap-
stone operating system is free and open source software licensed under the GNU Gen-

eral Public License version 3.

Kustaa Nyholm’s tiny format strings implementation is used throughout the source
code of the operating system. The arrangement of Megalovania by Toby Fox for the PC
motherboard speaker is licensed under CC BY-NC-SA 3.0.

https://www.github.com/walterj21/capos
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

22

Bibliography

Bach, Maurice J. The Design of the Unix Operating System. Prentice Hall / Bell Telephone
Laboratories, 1986.

Bershad, Brian N., et al. “Extensibility, Safety, and Performance in the SPIN Operating
System”. Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles
(Colorado) (1995): 267-284. https://doi.org/10.1145/224056.224077.

Davis, Terry. The Temple Operating System. The Internet Archive, archived 3 September
2013. https://web.archive.org/web/20130703141455/http://www.templeos.org:
80/.

Engler, Dawson R. The Exokernel Operating System Architecture. Doctoral thesis, Mas-
sachusetts Institute of Technology, 1998. https://hdl.handle.net/1721.1/16713.
GNU General Public License. Free Software Foundation, 2007. https ://www . gnu . org/

licenses/gpl-3.0.html.

Gasser, Morrie. Building a Secure Computer System. Van Nostrand Reinhold, 1988.

Intel 80386 Programmer’s Reference Manual 1986. Intel Corporation, 1987. https://css.
csail.mit.edu/6.858/2014/readings/i386.pdf.

The Internet of Things (IoT): An Overview. Congressional Research Service, 2020. https:
//crsreports.congress.gov/product/pdf/IF/IF11239.

Irvine, Cynthia E. The Reference Monitor Concept as a Unifying Principle in Computer Secu-
rity Education. Naval Postgraduate School, 1999. https://hdl . handle .net/10945/
7200.

Jaeger, Trent. Operating System Security. Morgan & Claypool, 2008.

Kemerlis, Vasileios. Protecting Commodity Operating Systems through Strong Kernel Iso-
lation. Doctoral thesis, Columbia University, 2015. https : //doi . org/ 10 . 7916/
D89CEWZ6.

Levin, R, et al. “Policy / Mechanism Separation in Hydra”. ACM SIGOPS Operating
Systems Review vol. 9, no. 5 (1975): 132-140. https://doi.org/10.1145/1067629 .
806531.

Levy, Henry. Capability-Based Computer Systems. Digital Press, 1984. https : / / www .
homes.cs.washington.edu/ levy/capabook/.

Longstaff, Ellis, et al. Security of the Internet. Carnegie Mellon University, 2017. https://
resources.sei.cmu.edu/asset_files/SpecialReport/1996_003_001_496597 .pdf.

https://doi.org/10.1145/224056.224077
https://web.archive.org/web/20130703141455/http://www.templeos.org:80/
https://web.archive.org/web/20130703141455/http://www.templeos.org:80/
https://hdl.handle.net/1721.1/16713
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://css.csail.mit.edu/6.858/2014/readings/i386.pdf
https://crsreports.congress.gov/product/pdf/IF/IF11239
https://crsreports.congress.gov/product/pdf/IF/IF11239
https://hdl.handle.net/10945/7200
https://hdl.handle.net/10945/7200
https://doi.org/10.7916/D89C6WZ6
https://doi.org/10.7916/D89C6WZ6
https://doi.org/10.1145/1067629.806531
https://doi.org/10.1145/1067629.806531
https://www.homes.cs.washington.edu/~levy/capabook/
https://www.homes.cs.washington.edu/~levy/capabook/
https://resources.sei.cmu.edu/asset_files/SpecialReport/1996_003_001_496597.pdf
https://resources.sei.cmu.edu/asset_files/SpecialReport/1996_003_001_496597.pdf

Bibliography 23

Love, Robert. Linux Kernel Development. 3rd ed. Addison Wesley, 2010.

Myers, Philip. Subversion: The Neglected Aspect of Computer Security. Master’s thesis, Naval
Postgraduate School, 1980. https://www.hsdl.org/?view&did=440858.

Peterson, A. P. “Counteracting Viruses in an MS-DOS Environment”. Information Sys-
tems Security vol. 1,no. 1 (1992): 58-65. https://doi.org/10.1080/19393559208551318.

Roch, Benjamin. Monolithic Kernel vs. Microkernel. Vienna University of Technology, 2004.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9877&rep=
repl&type=pdf.

Russinovich, Mark, et al. Windows Internals Part 1. 6th ed. Microsoft Press, 2012.

Silberschatz, Abraham, et al. Operating System Concepts. 9th ed. Wiley, 2014.

Stallman, Richard. “Why Open Source Misses the Point of Free Software”. Visited on
08/22/2020. https://www.gnu.org/philosophy/open-source-misses-the-point.
html.

Tanenbaum, Andrew S. Modern Operating Systems. 3rd ed. Pearson Prentice Hall, 2008.

Thompson, Ken. “Reflections on Trusting Trust”. Communications of the ACM vol. 27, no.
8 (1984): 761-763. https://doi.org/10.1145/358198.358210.

https://www.hsdl.org/?view&did=440858
https://doi.org/10.1080/19393559208551318
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9877&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.9877&rep=rep1&type=pdf
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://doi.org/10.1145/358198.358210

	Contents
	Models of Security and Protection
	Security and Protection Goals
	Reference Monitors and Capabilities
	The Process Abstraction
	Separation of Privilege
	Internet Connectivity and Security
	Conclusion

	Personal Computing Freedom
	Security, Protection, and Personal Computing Freedom
	Security and Protection Reduce Freedom
	The Reference Monitor Concept
	Memory Protection
	Privilege Separation
	The Multi-User Paradigm
	Conclusion

	Security, Protection, and Freedom in Practice
	Introduction
	UNIX
	Windows 7
	Hydra, SPIN, and Xok
	The Temple Operating System

	The Capstone Operating System
	Goals of The Capstone Operating System
	Kernel Design
	Architecture and Accessibility
	Memory Representation
	User Accommodations
	Dynamic Memory Allocation
	Conclusions

	Capstone Operating System Code

